3.3.70 \(\int \frac {(c-c \sin (e+f x))^4}{(a+a \sin (e+f x))^2} \, dx\) [270]

3.3.70.1 Optimal result
3.3.70.2 Mathematica [A] (verified)
3.3.70.3 Rubi [A] (verified)
3.3.70.4 Maple [A] (verified)
3.3.70.5 Fricas [A] (verification not implemented)
3.3.70.6 Sympy [B] (verification not implemented)
3.3.70.7 Maxima [B] (verification not implemented)
3.3.70.8 Giac [A] (verification not implemented)
3.3.70.9 Mupad [B] (verification not implemented)

3.3.70.1 Optimal result

Integrand size = 26, antiderivative size = 135 \[ \int \frac {(c-c \sin (e+f x))^4}{(a+a \sin (e+f x))^2} \, dx=\frac {35 c^4 x}{2 a^2}+\frac {35 c^4 \cos (e+f x)}{2 a^2 f}-\frac {2 a^3 c^4 \cos ^7(e+f x)}{3 f (a+a \sin (e+f x))^5}+\frac {14 a^4 c^4 \cos ^5(e+f x)}{3 f \left (a^2+a^2 \sin (e+f x)\right )^3}+\frac {35 c^4 \cos ^3(e+f x)}{6 f \left (a^2+a^2 \sin (e+f x)\right )} \]

output
35/2*c^4*x/a^2+35/2*c^4*cos(f*x+e)/a^2/f-2/3*a^3*c^4*cos(f*x+e)^7/f/(a+a*s 
in(f*x+e))^5+14/3*a^4*c^4*cos(f*x+e)^5/f/(a^2+a^2*sin(f*x+e))^3+35/6*c^4*c 
os(f*x+e)^3/f/(a^2+a^2*sin(f*x+e))
 
3.3.70.2 Mathematica [A] (verified)

Time = 11.89 (sec) , antiderivative size = 243, normalized size of antiderivative = 1.80 \[ \int \frac {(c-c \sin (e+f x))^4}{(a+a \sin (e+f x))^2} \, dx=\frac {\left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right ) (c-c \sin (e+f x))^4 \left (128 \sin \left (\frac {1}{2} (e+f x)\right )-64 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )-640 \sin \left (\frac {1}{2} (e+f x)\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^2+210 (e+f x) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3+72 \cos (e+f x) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3-3 \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^3 \sin (2 (e+f x))\right )}{12 f \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^8 (a+a \sin (e+f x))^2} \]

input
Integrate[(c - c*Sin[e + f*x])^4/(a + a*Sin[e + f*x])^2,x]
 
output
((Cos[(e + f*x)/2] + Sin[(e + f*x)/2])*(c - c*Sin[e + f*x])^4*(128*Sin[(e 
+ f*x)/2] - 64*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2]) - 640*Sin[(e + f*x)/2 
]*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^2 + 210*(e + f*x)*(Cos[(e + f*x)/2 
] + Sin[(e + f*x)/2])^3 + 72*Cos[e + f*x]*(Cos[(e + f*x)/2] + Sin[(e + f*x 
)/2])^3 - 3*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^3*Sin[2*(e + f*x)]))/(12 
*f*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^8*(a + a*Sin[e + f*x])^2)
 
3.3.70.3 Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 137, normalized size of antiderivative = 1.01, number of steps used = 11, number of rules used = 11, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.423, Rules used = {3042, 3215, 3042, 3159, 3042, 3159, 3042, 3158, 3042, 3161, 24}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(c-c \sin (e+f x))^4}{(a \sin (e+f x)+a)^2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(c-c \sin (e+f x))^4}{(a \sin (e+f x)+a)^2}dx\)

\(\Big \downarrow \) 3215

\(\displaystyle a^4 c^4 \int \frac {\cos ^8(e+f x)}{(\sin (e+f x) a+a)^6}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle a^4 c^4 \int \frac {\cos (e+f x)^8}{(\sin (e+f x) a+a)^6}dx\)

\(\Big \downarrow \) 3159

\(\displaystyle a^4 c^4 \left (-\frac {7 \int \frac {\cos ^6(e+f x)}{(\sin (e+f x) a+a)^4}dx}{3 a^2}-\frac {2 \cos ^7(e+f x)}{3 a f (a \sin (e+f x)+a)^5}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a^4 c^4 \left (-\frac {7 \int \frac {\cos (e+f x)^6}{(\sin (e+f x) a+a)^4}dx}{3 a^2}-\frac {2 \cos ^7(e+f x)}{3 a f (a \sin (e+f x)+a)^5}\right )\)

\(\Big \downarrow \) 3159

\(\displaystyle a^4 c^4 \left (-\frac {7 \left (-\frac {5 \int \frac {\cos ^4(e+f x)}{(\sin (e+f x) a+a)^2}dx}{a^2}-\frac {2 \cos ^5(e+f x)}{a f (a \sin (e+f x)+a)^3}\right )}{3 a^2}-\frac {2 \cos ^7(e+f x)}{3 a f (a \sin (e+f x)+a)^5}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a^4 c^4 \left (-\frac {7 \left (-\frac {5 \int \frac {\cos (e+f x)^4}{(\sin (e+f x) a+a)^2}dx}{a^2}-\frac {2 \cos ^5(e+f x)}{a f (a \sin (e+f x)+a)^3}\right )}{3 a^2}-\frac {2 \cos ^7(e+f x)}{3 a f (a \sin (e+f x)+a)^5}\right )\)

\(\Big \downarrow \) 3158

\(\displaystyle a^4 c^4 \left (-\frac {7 \left (-\frac {5 \left (\frac {3 \int \frac {\cos ^2(e+f x)}{\sin (e+f x) a+a}dx}{2 a}+\frac {\cos ^3(e+f x)}{2 f \left (a^2 \sin (e+f x)+a^2\right )}\right )}{a^2}-\frac {2 \cos ^5(e+f x)}{a f (a \sin (e+f x)+a)^3}\right )}{3 a^2}-\frac {2 \cos ^7(e+f x)}{3 a f (a \sin (e+f x)+a)^5}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle a^4 c^4 \left (-\frac {7 \left (-\frac {5 \left (\frac {3 \int \frac {\cos (e+f x)^2}{\sin (e+f x) a+a}dx}{2 a}+\frac {\cos ^3(e+f x)}{2 f \left (a^2 \sin (e+f x)+a^2\right )}\right )}{a^2}-\frac {2 \cos ^5(e+f x)}{a f (a \sin (e+f x)+a)^3}\right )}{3 a^2}-\frac {2 \cos ^7(e+f x)}{3 a f (a \sin (e+f x)+a)^5}\right )\)

\(\Big \downarrow \) 3161

\(\displaystyle a^4 c^4 \left (-\frac {7 \left (-\frac {5 \left (\frac {3 \left (\frac {\int 1dx}{a}+\frac {\cos (e+f x)}{a f}\right )}{2 a}+\frac {\cos ^3(e+f x)}{2 f \left (a^2 \sin (e+f x)+a^2\right )}\right )}{a^2}-\frac {2 \cos ^5(e+f x)}{a f (a \sin (e+f x)+a)^3}\right )}{3 a^2}-\frac {2 \cos ^7(e+f x)}{3 a f (a \sin (e+f x)+a)^5}\right )\)

\(\Big \downarrow \) 24

\(\displaystyle a^4 c^4 \left (-\frac {7 \left (-\frac {5 \left (\frac {\cos ^3(e+f x)}{2 f \left (a^2 \sin (e+f x)+a^2\right )}+\frac {3 \left (\frac {\cos (e+f x)}{a f}+\frac {x}{a}\right )}{2 a}\right )}{a^2}-\frac {2 \cos ^5(e+f x)}{a f (a \sin (e+f x)+a)^3}\right )}{3 a^2}-\frac {2 \cos ^7(e+f x)}{3 a f (a \sin (e+f x)+a)^5}\right )\)

input
Int[(c - c*Sin[e + f*x])^4/(a + a*Sin[e + f*x])^2,x]
 
output
a^4*c^4*((-2*Cos[e + f*x]^7)/(3*a*f*(a + a*Sin[e + f*x])^5) - (7*((-2*Cos[ 
e + f*x]^5)/(a*f*(a + a*Sin[e + f*x])^3) - (5*((3*(x/a + Cos[e + f*x]/(a*f 
)))/(2*a) + Cos[e + f*x]^3/(2*f*(a^2 + a^2*Sin[e + f*x]))))/a^2))/(3*a^2))
 

3.3.70.3.1 Defintions of rubi rules used

rule 24
Int[a_, x_Symbol] :> Simp[a*x, x] /; FreeQ[a, x]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3158
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[g*(g*Cos[e + f*x])^(p - 1)*((a + b*Sin[e + f*x 
])^(m + 1)/(b*f*(m + p))), x] + Simp[g^2*((p - 1)/(a*(m + p)))   Int[(g*Cos 
[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{a, b, e, 
f, g}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1] && GtQ[p, 1] && (GtQ[m, -2] || 
 EqQ[2*m + p + 1, 0] || (EqQ[m, -2] && IntegerQ[p])) && NeQ[m + p, 0] && In 
tegersQ[2*m, 2*p]
 

rule 3159
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)])^(m_), x_Symbol] :> Simp[2*g*(g*Cos[e + f*x])^(p - 1)*((a + b*Sin[e + f 
*x])^(m + 1)/(b*f*(2*m + p + 1))), x] + Simp[g^2*((p - 1)/(b^2*(2*m + p + 1 
)))   Int[(g*Cos[e + f*x])^(p - 2)*(a + b*Sin[e + f*x])^(m + 2), x], x] /; 
FreeQ[{a, b, e, f, g}, x] && EqQ[a^2 - b^2, 0] && LeQ[m, -2] && GtQ[p, 1] & 
& NeQ[2*m + p + 1, 0] &&  !ILtQ[m + p + 1, 0] && IntegersQ[2*m, 2*p]
 

rule 3161
Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x 
_)]), x_Symbol] :> Simp[g*((g*Cos[e + f*x])^(p - 1)/(b*f*(p - 1))), x] + Si 
mp[g^2/a   Int[(g*Cos[e + f*x])^(p - 2), x], x] /; FreeQ[{a, b, e, f, g}, x 
] && EqQ[a^2 - b^2, 0] && GtQ[p, 1] && IntegerQ[2*p]
 

rule 3215
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_) + (d_.)*sin[(e_.) + 
(f_.)*(x_)])^(n_.), x_Symbol] :> Simp[a^m*c^m   Int[Cos[e + f*x]^(2*m)*(c + 
 d*Sin[e + f*x])^(n - m), x], x] /; FreeQ[{a, b, c, d, e, f, n}, x] && EqQ[ 
b*c + a*d, 0] && EqQ[a^2 - b^2, 0] && IntegerQ[m] &&  !(IntegerQ[n] && ((Lt 
Q[m, 0] && GtQ[n, 0]) || LtQ[0, n, m] || LtQ[m, n, 0]))
 
3.3.70.4 Maple [A] (verified)

Time = 0.86 (sec) , antiderivative size = 125, normalized size of antiderivative = 0.93

method result size
derivativedivides \(\frac {2 c^{4} \left (\frac {\frac {\left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2}+6 \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )-\frac {\tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{2}+6}{\left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )^{2}}+\frac {35 \arctan \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2}-\frac {32}{3 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}+\frac {16}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{2}}+\frac {16}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1}\right )}{f \,a^{2}}\) \(125\)
default \(\frac {2 c^{4} \left (\frac {\frac {\left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2}+6 \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )-\frac {\tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{2}+6}{\left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )^{2}}+\frac {35 \arctan \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2}-\frac {32}{3 \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}+\frac {16}{\left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{2}}+\frac {16}{\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1}\right )}{f \,a^{2}}\) \(125\)
risch \(\frac {35 c^{4} x}{2 a^{2}}+\frac {i c^{4} {\mathrm e}^{2 i \left (f x +e \right )}}{8 a^{2} f}+\frac {3 c^{4} {\mathrm e}^{i \left (f x +e \right )}}{a^{2} f}+\frac {3 c^{4} {\mathrm e}^{-i \left (f x +e \right )}}{a^{2} f}-\frac {i c^{4} {\mathrm e}^{-2 i \left (f x +e \right )}}{8 a^{2} f}+\frac {96 i c^{4} {\mathrm e}^{i \left (f x +e \right )}+64 c^{4} {\mathrm e}^{2 i \left (f x +e \right )}-\frac {160 c^{4}}{3}}{f \,a^{2} \left ({\mathrm e}^{i \left (f x +e \right )}+i\right )^{3}}\) \(150\)
parallelrisch \(\frac {c^{4} \left (1260 f x \sin \left (\frac {f x}{2}+\frac {e}{2}\right )+1260 f x \cos \left (\frac {f x}{2}+\frac {e}{2}\right )-420 f x \cos \left (\frac {3 f x}{2}+\frac {3 e}{2}\right )+420 f x \sin \left (\frac {3 f x}{2}+\frac {3 e}{2}\right )+1443 \sin \left (\frac {f x}{2}+\frac {e}{2}\right )+2493 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )-63 \cos \left (\frac {5 f x}{2}+\frac {5 e}{2}\right )+3 \cos \left (\frac {7 f x}{2}+\frac {7 e}{2}\right )+191 \cos \left (\frac {3 f x}{2}+\frac {3 e}{2}\right )+3 \sin \left (\frac {7 f x}{2}+\frac {7 e}{2}\right )+63 \sin \left (\frac {5 f x}{2}+\frac {5 e}{2}\right )+1503 \sin \left (\frac {3 f x}{2}+\frac {3 e}{2}\right )\right )}{24 f \,a^{2} \left (3 \cos \left (\frac {f x}{2}+\frac {e}{2}\right )-\cos \left (\frac {3 f x}{2}+\frac {3 e}{2}\right )+\sin \left (\frac {3 f x}{2}+\frac {3 e}{2}\right )+3 \sin \left (\frac {f x}{2}+\frac {e}{2}\right )\right )}\) \(198\)
norman \(\frac {\frac {111 c^{4} \left (\tan ^{9}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{f a}+\frac {131 c^{4} \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{f a}+\frac {500 c^{4} \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{f a}+\frac {35 c^{4} x}{2 a}+\frac {164 c^{4}}{3 f a}+\frac {105 c^{4} x \tan \left (\frac {f x}{2}+\frac {e}{2}\right )}{2 a}+\frac {245 c^{4} x \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 a}+\frac {455 c^{4} x \left (\tan ^{3}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 a}+\frac {315 c^{4} x \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}+\frac {385 c^{4} x \left (\tan ^{5}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}+\frac {385 c^{4} x \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}+\frac {315 c^{4} x \left (\tan ^{7}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{a}+\frac {455 c^{4} x \left (\tan ^{8}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 a}+\frac {245 c^{4} x \left (\tan ^{9}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 a}+\frac {105 c^{4} x \left (\tan ^{10}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 a}+\frac {35 c^{4} x \left (\tan ^{11}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{2 a}+\frac {33 c^{4} \left (\tan ^{10}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{f a}+\frac {460 c^{4} \left (\tan ^{7}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{f a}+\frac {524 c^{4} \left (\tan ^{4}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{f a}+\frac {718 c^{4} \left (\tan ^{5}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{f a}+\frac {632 c^{4} \left (\tan ^{8}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3 f a}+\frac {1454 c^{4} \left (\tan ^{6}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3 f a}+\frac {815 c^{4} \left (\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )}{3 f a}}{\left (1+\tan ^{2}\left (\frac {f x}{2}+\frac {e}{2}\right )\right )^{4} a \left (\tan \left (\frac {f x}{2}+\frac {e}{2}\right )+1\right )^{3}}\) \(490\)

input
int((c-c*sin(f*x+e))^4/(a+a*sin(f*x+e))^2,x,method=_RETURNVERBOSE)
 
output
2/f*c^4/a^2*((1/2*tan(1/2*f*x+1/2*e)^3+6*tan(1/2*f*x+1/2*e)^2-1/2*tan(1/2* 
f*x+1/2*e)+6)/(1+tan(1/2*f*x+1/2*e)^2)^2+35/2*arctan(tan(1/2*f*x+1/2*e))-3 
2/3/(tan(1/2*f*x+1/2*e)+1)^3+16/(tan(1/2*f*x+1/2*e)+1)^2+16/(tan(1/2*f*x+1 
/2*e)+1))
 
3.3.70.5 Fricas [A] (verification not implemented)

Time = 0.26 (sec) , antiderivative size = 210, normalized size of antiderivative = 1.56 \[ \int \frac {(c-c \sin (e+f x))^4}{(a+a \sin (e+f x))^2} \, dx=-\frac {3 \, c^{4} \cos \left (f x + e\right )^{4} - 30 \, c^{4} \cos \left (f x + e\right )^{3} + 210 \, c^{4} f x - 32 \, c^{4} - {\left (105 \, c^{4} f x - 193 \, c^{4}\right )} \cos \left (f x + e\right )^{2} + {\left (105 \, c^{4} f x + 194 \, c^{4}\right )} \cos \left (f x + e\right ) + {\left (3 \, c^{4} \cos \left (f x + e\right )^{3} + 210 \, c^{4} f x + 33 \, c^{4} \cos \left (f x + e\right )^{2} + 32 \, c^{4} + {\left (105 \, c^{4} f x + 226 \, c^{4}\right )} \cos \left (f x + e\right )\right )} \sin \left (f x + e\right )}{6 \, {\left (a^{2} f \cos \left (f x + e\right )^{2} - a^{2} f \cos \left (f x + e\right ) - 2 \, a^{2} f - {\left (a^{2} f \cos \left (f x + e\right ) + 2 \, a^{2} f\right )} \sin \left (f x + e\right )\right )}} \]

input
integrate((c-c*sin(f*x+e))^4/(a+a*sin(f*x+e))^2,x, algorithm="fricas")
 
output
-1/6*(3*c^4*cos(f*x + e)^4 - 30*c^4*cos(f*x + e)^3 + 210*c^4*f*x - 32*c^4 
- (105*c^4*f*x - 193*c^4)*cos(f*x + e)^2 + (105*c^4*f*x + 194*c^4)*cos(f*x 
 + e) + (3*c^4*cos(f*x + e)^3 + 210*c^4*f*x + 33*c^4*cos(f*x + e)^2 + 32*c 
^4 + (105*c^4*f*x + 226*c^4)*cos(f*x + e))*sin(f*x + e))/(a^2*f*cos(f*x + 
e)^2 - a^2*f*cos(f*x + e) - 2*a^2*f - (a^2*f*cos(f*x + e) + 2*a^2*f)*sin(f 
*x + e))
 
3.3.70.6 Sympy [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 2312 vs. \(2 (128) = 256\).

Time = 7.28 (sec) , antiderivative size = 2312, normalized size of antiderivative = 17.13 \[ \int \frac {(c-c \sin (e+f x))^4}{(a+a \sin (e+f x))^2} \, dx=\text {Too large to display} \]

input
integrate((c-c*sin(f*x+e))**4/(a+a*sin(f*x+e))**2,x)
 
output
Piecewise((105*c**4*f*x*tan(e/2 + f*x/2)**7/(6*a**2*f*tan(e/2 + f*x/2)**7 
+ 18*a**2*f*tan(e/2 + f*x/2)**6 + 30*a**2*f*tan(e/2 + f*x/2)**5 + 42*a**2* 
f*tan(e/2 + f*x/2)**4 + 42*a**2*f*tan(e/2 + f*x/2)**3 + 30*a**2*f*tan(e/2 
+ f*x/2)**2 + 18*a**2*f*tan(e/2 + f*x/2) + 6*a**2*f) + 315*c**4*f*x*tan(e/ 
2 + f*x/2)**6/(6*a**2*f*tan(e/2 + f*x/2)**7 + 18*a**2*f*tan(e/2 + f*x/2)** 
6 + 30*a**2*f*tan(e/2 + f*x/2)**5 + 42*a**2*f*tan(e/2 + f*x/2)**4 + 42*a** 
2*f*tan(e/2 + f*x/2)**3 + 30*a**2*f*tan(e/2 + f*x/2)**2 + 18*a**2*f*tan(e/ 
2 + f*x/2) + 6*a**2*f) + 525*c**4*f*x*tan(e/2 + f*x/2)**5/(6*a**2*f*tan(e/ 
2 + f*x/2)**7 + 18*a**2*f*tan(e/2 + f*x/2)**6 + 30*a**2*f*tan(e/2 + f*x/2) 
**5 + 42*a**2*f*tan(e/2 + f*x/2)**4 + 42*a**2*f*tan(e/2 + f*x/2)**3 + 30*a 
**2*f*tan(e/2 + f*x/2)**2 + 18*a**2*f*tan(e/2 + f*x/2) + 6*a**2*f) + 735*c 
**4*f*x*tan(e/2 + f*x/2)**4/(6*a**2*f*tan(e/2 + f*x/2)**7 + 18*a**2*f*tan( 
e/2 + f*x/2)**6 + 30*a**2*f*tan(e/2 + f*x/2)**5 + 42*a**2*f*tan(e/2 + f*x/ 
2)**4 + 42*a**2*f*tan(e/2 + f*x/2)**3 + 30*a**2*f*tan(e/2 + f*x/2)**2 + 18 
*a**2*f*tan(e/2 + f*x/2) + 6*a**2*f) + 735*c**4*f*x*tan(e/2 + f*x/2)**3/(6 
*a**2*f*tan(e/2 + f*x/2)**7 + 18*a**2*f*tan(e/2 + f*x/2)**6 + 30*a**2*f*ta 
n(e/2 + f*x/2)**5 + 42*a**2*f*tan(e/2 + f*x/2)**4 + 42*a**2*f*tan(e/2 + f* 
x/2)**3 + 30*a**2*f*tan(e/2 + f*x/2)**2 + 18*a**2*f*tan(e/2 + f*x/2) + 6*a 
**2*f) + 525*c**4*f*x*tan(e/2 + f*x/2)**2/(6*a**2*f*tan(e/2 + f*x/2)**7 + 
18*a**2*f*tan(e/2 + f*x/2)**6 + 30*a**2*f*tan(e/2 + f*x/2)**5 + 42*a**2...
 
3.3.70.7 Maxima [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 903 vs. \(2 (125) = 250\).

Time = 0.30 (sec) , antiderivative size = 903, normalized size of antiderivative = 6.69 \[ \int \frac {(c-c \sin (e+f x))^4}{(a+a \sin (e+f x))^2} \, dx=\text {Too large to display} \]

input
integrate((c-c*sin(f*x+e))^4/(a+a*sin(f*x+e))^2,x, algorithm="maxima")
 
output
1/3*(c^4*((75*sin(f*x + e)/(cos(f*x + e) + 1) + 97*sin(f*x + e)^2/(cos(f*x 
 + e) + 1)^2 + 126*sin(f*x + e)^3/(cos(f*x + e) + 1)^3 + 98*sin(f*x + e)^4 
/(cos(f*x + e) + 1)^4 + 63*sin(f*x + e)^5/(cos(f*x + e) + 1)^5 + 21*sin(f* 
x + e)^6/(cos(f*x + e) + 1)^6 + 32)/(a^2 + 3*a^2*sin(f*x + e)/(cos(f*x + e 
) + 1) + 5*a^2*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 7*a^2*sin(f*x + e)^3/ 
(cos(f*x + e) + 1)^3 + 7*a^2*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 5*a^2*s 
in(f*x + e)^5/(cos(f*x + e) + 1)^5 + 3*a^2*sin(f*x + e)^6/(cos(f*x + e) + 
1)^6 + a^2*sin(f*x + e)^7/(cos(f*x + e) + 1)^7) + 21*arctan(sin(f*x + e)/( 
cos(f*x + e) + 1))/a^2) + 16*c^4*((12*sin(f*x + e)/(cos(f*x + e) + 1) + 11 
*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 9*sin(f*x + e)^3/(cos(f*x + e) + 1) 
^3 + 3*sin(f*x + e)^4/(cos(f*x + e) + 1)^4 + 5)/(a^2 + 3*a^2*sin(f*x + e)/ 
(cos(f*x + e) + 1) + 4*a^2*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + 4*a^2*sin 
(f*x + e)^3/(cos(f*x + e) + 1)^3 + 3*a^2*sin(f*x + e)^4/(cos(f*x + e) + 1) 
^4 + a^2*sin(f*x + e)^5/(cos(f*x + e) + 1)^5) + 3*arctan(sin(f*x + e)/(cos 
(f*x + e) + 1))/a^2) + 12*c^4*((9*sin(f*x + e)/(cos(f*x + e) + 1) + 3*sin( 
f*x + e)^2/(cos(f*x + e) + 1)^2 + 4)/(a^2 + 3*a^2*sin(f*x + e)/(cos(f*x + 
e) + 1) + 3*a^2*sin(f*x + e)^2/(cos(f*x + e) + 1)^2 + a^2*sin(f*x + e)^3/( 
cos(f*x + e) + 1)^3) + 3*arctan(sin(f*x + e)/(cos(f*x + e) + 1))/a^2) - 2* 
c^4*(3*sin(f*x + e)/(cos(f*x + e) + 1) + 3*sin(f*x + e)^2/(cos(f*x + e) + 
1)^2 + 2)/(a^2 + 3*a^2*sin(f*x + e)/(cos(f*x + e) + 1) + 3*a^2*sin(f*x ...
 
3.3.70.8 Giac [A] (verification not implemented)

Time = 0.33 (sec) , antiderivative size = 144, normalized size of antiderivative = 1.07 \[ \int \frac {(c-c \sin (e+f x))^4}{(a+a \sin (e+f x))^2} \, dx=\frac {\frac {105 \, {\left (f x + e\right )} c^{4}}{a^{2}} + \frac {6 \, {\left (c^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{3} + 12 \, c^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} - c^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 12 \, c^{4}\right )}}{{\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 1\right )}^{2} a^{2}} + \frac {64 \, {\left (3 \, c^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right )^{2} + 9 \, c^{4} \tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 4 \, c^{4}\right )}}{a^{2} {\left (\tan \left (\frac {1}{2} \, f x + \frac {1}{2} \, e\right ) + 1\right )}^{3}}}{6 \, f} \]

input
integrate((c-c*sin(f*x+e))^4/(a+a*sin(f*x+e))^2,x, algorithm="giac")
 
output
1/6*(105*(f*x + e)*c^4/a^2 + 6*(c^4*tan(1/2*f*x + 1/2*e)^3 + 12*c^4*tan(1/ 
2*f*x + 1/2*e)^2 - c^4*tan(1/2*f*x + 1/2*e) + 12*c^4)/((tan(1/2*f*x + 1/2* 
e)^2 + 1)^2*a^2) + 64*(3*c^4*tan(1/2*f*x + 1/2*e)^2 + 9*c^4*tan(1/2*f*x + 
1/2*e) + 4*c^4)/(a^2*(tan(1/2*f*x + 1/2*e) + 1)^3))/f
 
3.3.70.9 Mupad [B] (verification not implemented)

Time = 10.67 (sec) , antiderivative size = 291, normalized size of antiderivative = 2.16 \[ \int \frac {(c-c \sin (e+f x))^4}{(a+a \sin (e+f x))^2} \, dx=\frac {35\,c^4\,x}{2\,a^2}-\frac {\frac {35\,c^4\,\left (e+f\,x\right )}{2}+\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )\,\left (\frac {105\,c^4\,\left (e+f\,x\right )}{2}-\frac {c^4\,\left (315\,e+315\,f\,x+786\right )}{6}\right )-\frac {c^4\,\left (105\,e+105\,f\,x+328\right )}{6}+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^6\,\left (\frac {105\,c^4\,\left (e+f\,x\right )}{2}-\frac {c^4\,\left (315\,e+315\,f\,x+198\right )}{6}\right )+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^5\,\left (\frac {175\,c^4\,\left (e+f\,x\right )}{2}-\frac {c^4\,\left (525\,e+525\,f\,x+666\right )}{6}\right )+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2\,\left (\frac {175\,c^4\,\left (e+f\,x\right )}{2}-\frac {c^4\,\left (525\,e+525\,f\,x+974\right )}{6}\right )+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^4\,\left (\frac {245\,c^4\,\left (e+f\,x\right )}{2}-\frac {c^4\,\left (735\,e+735\,f\,x+868\right )}{6}\right )+{\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^3\,\left (\frac {245\,c^4\,\left (e+f\,x\right )}{2}-\frac {c^4\,\left (735\,e+735\,f\,x+1428\right )}{6}\right )}{a^2\,f\,{\left (\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )+1\right )}^3\,{\left ({\mathrm {tan}\left (\frac {e}{2}+\frac {f\,x}{2}\right )}^2+1\right )}^2} \]

input
int((c - c*sin(e + f*x))^4/(a + a*sin(e + f*x))^2,x)
 
output
(35*c^4*x)/(2*a^2) - ((35*c^4*(e + f*x))/2 + tan(e/2 + (f*x)/2)*((105*c^4* 
(e + f*x))/2 - (c^4*(315*e + 315*f*x + 786))/6) - (c^4*(105*e + 105*f*x + 
328))/6 + tan(e/2 + (f*x)/2)^6*((105*c^4*(e + f*x))/2 - (c^4*(315*e + 315* 
f*x + 198))/6) + tan(e/2 + (f*x)/2)^5*((175*c^4*(e + f*x))/2 - (c^4*(525*e 
 + 525*f*x + 666))/6) + tan(e/2 + (f*x)/2)^2*((175*c^4*(e + f*x))/2 - (c^4 
*(525*e + 525*f*x + 974))/6) + tan(e/2 + (f*x)/2)^4*((245*c^4*(e + f*x))/2 
 - (c^4*(735*e + 735*f*x + 868))/6) + tan(e/2 + (f*x)/2)^3*((245*c^4*(e + 
f*x))/2 - (c^4*(735*e + 735*f*x + 1428))/6))/(a^2*f*(tan(e/2 + (f*x)/2) + 
1)^3*(tan(e/2 + (f*x)/2)^2 + 1)^2)